BAYES' RULE

EXAMPLE: FRAUD DETECTION IN CREDIT CARD TRANSACTIONS

Imagine a bank is using an algorithm to detect potential credit card fraud.

- Let *F* represent a fraudulent transaction
- Let T represent a transaction flagged as fraudulent

We know the so called **Sensitivity** P(T|F): The probability that the algorithm flags a transaction as fraudulent given that it is actually fraudulent.

However, what the bank (and its customers) really want to know is:

What is the probability that a transaction is actually fraudulent, given that the algorithm has flagged it as potentially fraudulent?

P(F|T)

P(B|A) known, but want to know P(A|B)?

Then we need Bayes' rule!

BAYES RULE

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

PROOF

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

A TRICKY DENOMINATOR

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

3 VERSIONS OF LAW OF TOTAL PROBABILITY

Assume A_1, A_2, \dots, A_k are disjoint events that divide up the whole sample space so that their probabilities add to exactly 1. Then, if B is any other event

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_k \cap B)$$

= $P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_k)P(A_k)$

Special case: A and A^c are examples of disjoint events dividing up the whole sample space:

$$P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$$

3 VERSIONS OF BAYES' RULE

1.
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$= P(B|A)P(A) + P(B|A^c)P(A^c)$$
$$= P(B|A_1)P(A_1) + \dots + P(B|A_k)P(A_k)$$

2.
$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}$$

3.
$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_k)P(A_k)}$$

EXAMPLE: FRAUD DETECTION IN CREDIT CARD TRANSACTIONS

We know:

- P(T|F) = 0.90 (sensitivity)
- $\triangleright P(F) = 0.01$ (base rate of fraud)
- $P(T|F^c) = 0.05$ (false positive rate)
- $P(F^c) = 0.99$ (base rate of legitimate transactions)

We can then use the following version of Bayes rule:

$$P(F|T) = \frac{P(T|F)P(F)}{P(T|F)P(F) + P(T|F^c)P(F^c)} = \frac{\cdot}{\cdot} \times 0.15$$

A TYPICAL MISTAKE

Base rate fallacy: It is easy to overestimate the likelihood of fraud when a transaction is flagged because we focus on the high sensitivity and low false positives of the algorithm, neglecting the very low base rate of fraud P(F).

BASE RATE FALLACY

Sample of 1000 transactions:

1% fraud

99% legit

P(T|F) = 0.90 (sensitivity)

 $P(T|F^c) = 0.05$ (false positive rate)

50 False positives

940 True negatives

$$P(F|T) \approx \frac{9}{9+50} \approx 0.15$$

NHH TECH3

Sondre Hølleland Geir Drage Berentsen