# BAYES' RULE



#### **EXAMPLE: FRAUD DETECTION IN CREDIT CARD TRANSACTIONS**

Imagine a bank is using an algorithm to detect potential credit card fraud.

- Let *F* represent a fraudulent transaction
- Let T represent a transaction flagged as fraudulent

We know the so called **Sensitivity** P(T|F): The probability that the algorithm flags a transaction as fraudulent given that it is actually fraudulent.

However, what the bank (and its customers) really want to know is:

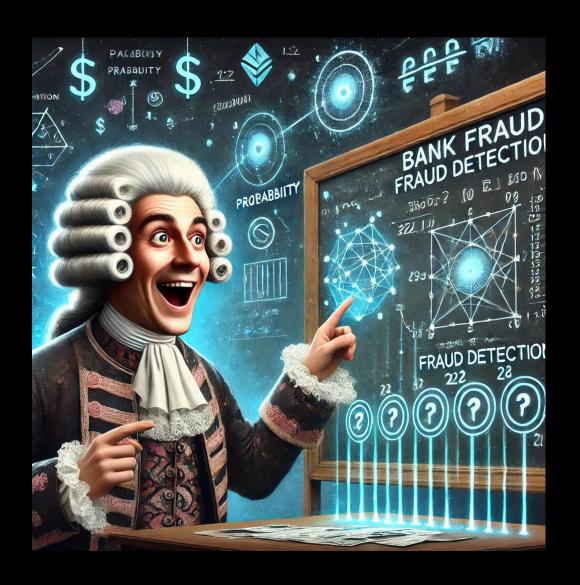
What is the probability that a transaction is actually fraudulent, given that the algorithm has flagged it as potentially fraudulent?

P(F|T)



# P(B|A) known, but want to know P(A|B)?

Then we need Bayes' rule!





# **BAYES RULE**

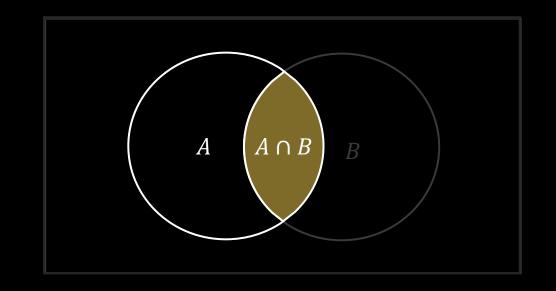
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$



# **PROOF**

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$





# A TRICKY DENOMINATOR

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$



# 3 VERSIONS OF LAW OF TOTAL PROBABILITY

Assume  $A_1, A_2, \dots, A_k$  are disjoint events that divide up the whole sample space so that their probabilities add to exactly 1. Then, if B is any other event

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_k \cap B)$$
  
=  $P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_k)P(A_k)$ 

Special case: A and  $A^c$  are examples of disjoint events dividing up the whole sample space:

$$P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$$



# 3 VERSIONS OF BAYES' RULE

1. 
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 
$$= P(B|A)P(A) + P(B|A^c)P(A^c)$$
$$= P(B|A_1)P(A_1) + \dots + P(B|A_k)P(A_k)$$

2. 
$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}$$

3. 
$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_k)P(A_k)}$$



#### **EXAMPLE: FRAUD DETECTION IN CREDIT CARD TRANSACTIONS**

#### We know:

- P(T|F) = 0.90 (sensitivity)
- $\triangleright P(F) = 0.01$  (base rate of fraud)
- $P(T|F^c) = 0.05$  (false positive rate)
- $P(F^c) = 0.99$  (base rate of legitimate transactions)

We can then use the following version of Bayes rule:

$$P(F|T) = \frac{P(T|F)P(F)}{P(T|F)P(F) + P(T|F^c)P(F^c)} = \frac{\cdot}{\cdot} \times 0.15$$



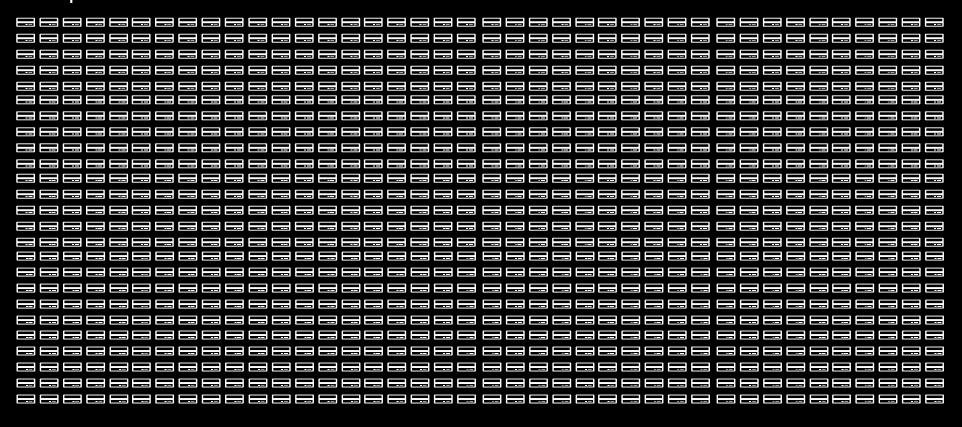
### A TYPICAL MISTAKE

Base rate fallacy: It is easy to overestimate the likelihood of fraud when a transaction is flagged because we focus on the high sensitivity and low false positives of the algorithm, neglecting the very low base rate of fraud P(F).



#### **BASE RATE FALLACY**

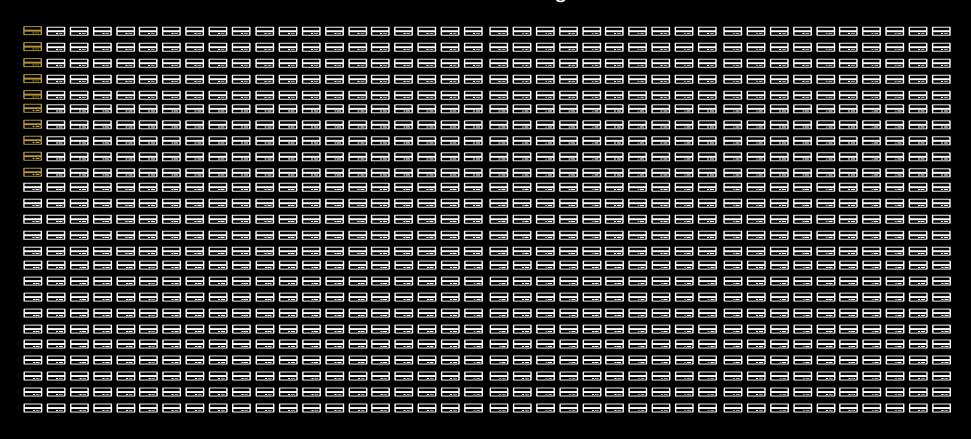
#### Sample of 1000 transactions:





1% fraud

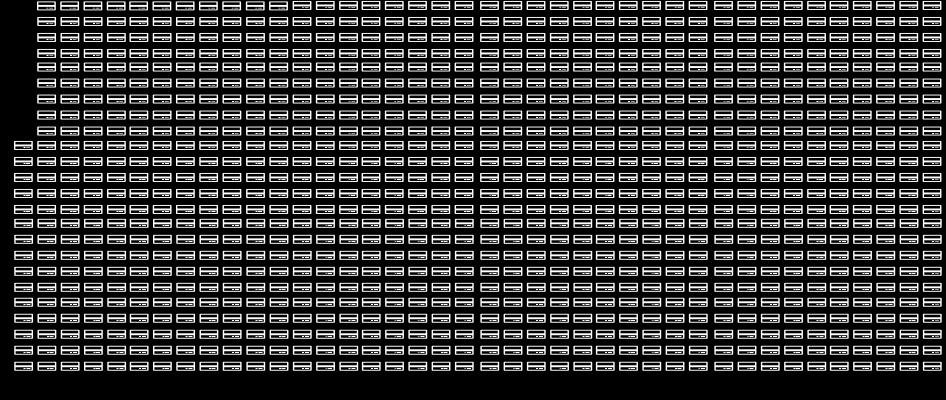
99% legit



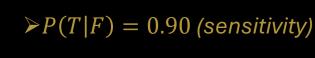
P(T|F) = 0.90 (sensitivity)





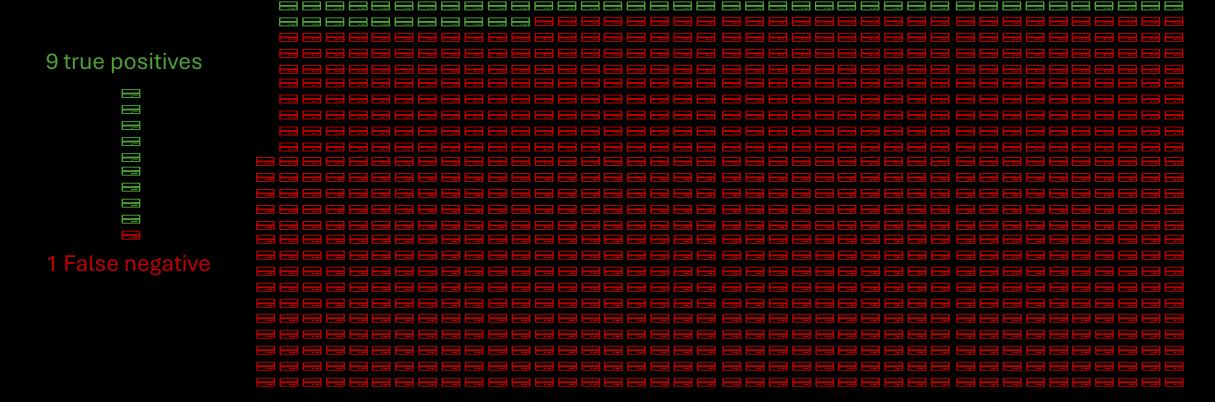


 $P(T|F^c) = 0.05$  (false positive rate)





#### 50 False positives

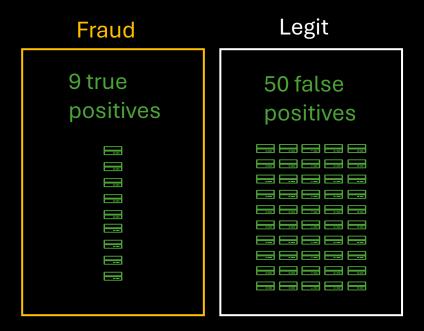


940 True negatives









$$P(F|T) \approx \frac{9}{9+50} \approx 0.15$$



# NHH TECH3

Sondre Hølleland Geir Drage Berentsen