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EXAMPLE: FRAUD DETECTION IN CREDIT CARD TRANSACTIONS

Imagine a bank is using  an algorithm to detect potential credit card fraud.

• Let F represent a fraudulent transaction

• Let T represent a transaction flagged as fraudulent

We know the so called Sensitivity 𝑃 𝑇 𝐹 : The probability that the algorithm flags a 
transaction as fraudulent given that it is actually fraudulent. 

However, what the bank (and its customers) really want to know is:

What is the probability that a transaction is actually fraudulent, given that the 
algorithm has flagged it as potentially fraudulent?

𝑃 𝐹 𝑇
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𝑃 𝐵 𝐴 known, but want to 
know 𝑃 𝐴 𝐵 ?

Then we need Bayes’ rule!
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BAYES RULE

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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PROOF

𝑃 𝐴 𝐵 =

𝐵𝐴 𝐵𝐴 𝐵𝐴 𝐴 ∩ 𝐵

𝑃(𝐵)

𝑃(𝐴 ∩ 𝐵)

𝑃 𝐵 𝐴 =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐵)𝑃(𝐴)

𝑃(𝐴 ∩ 𝐵)

𝐵𝐴 𝐴 ∩ 𝐵

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
𝑃 𝐵 𝐴 =

=
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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A TRICKY DENOMINATOR

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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3 VERSIONS OF LAW OF TOTAL 
PROBABILITY

Assume 𝐴1, 𝐴2, … , 𝐴𝑘  are disjoint events that 
divide up the whole sample space so that their 
probabilities add to exactly 1. Then, if 𝐵 is any 
other event

𝑃 𝐵 = 𝑃 𝐴1 ∩ 𝐵 + 𝑃 𝐴2 ∩ 𝐵 + … + 𝑃(𝐴𝑘 ∩ 𝐵)

𝑃 𝐵 𝐴 =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐵)𝑃(𝐴)

𝑃(𝐴 ∩ 𝐵)𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
𝑃 𝐵 𝐴 =

= 𝑃 𝐵 𝐴1 𝑃 𝐴1 + 𝑃 𝐵 𝐴2 𝑃 𝐴2 + … +  𝑃 𝐵 𝐴𝑘 𝑃(𝐴𝑘)

Special case: 𝐴 and 𝐴𝑐  are examples of disjoint events 
dividing up the whole sample space:

𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 𝐴𝑐 𝑃(𝐴𝑐)
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3 VERSIONS OF BAYES’ RULE

𝑃(𝐴|𝐵) =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

𝑃(𝐴|𝐵) =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃 𝐵|𝐴 𝑃(𝐴) + 𝑃 𝐵 𝐴𝐶 𝑃(𝐴𝐶)

𝑃(𝐵)

𝑃(𝐴𝑗|𝐵) =
𝑃 𝐵 𝐴𝑗 𝑃(𝐴𝑗)

𝑃 𝐵 𝐴1 𝑃 𝐴1 + 𝑃 𝐵 𝐴2 𝑃 𝐴2 + … +  𝑃 𝐵 𝐴𝑘 𝑃(𝐴𝑘)

1.

2.

3.

= 𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 𝐴𝑐 𝑃(𝐴𝑐)

= 𝑃 𝐵 𝐴1 𝑃 𝐴1 + ⋯ +  𝑃 𝐵 𝐴𝑘 𝑃(𝐴𝑘)

𝑃(𝐵)
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=
0.90 ∙ 0.01

0.90 ∙ 0.01 + 0.05 ∙ 0.99

EXAMPLE: FRAUD DETECTION IN CREDIT CARD TRANSACTIONS

We know: 

➢𝑃 𝑇 𝐹 = 0.90 (sensitivity)

➢𝑃 𝐹 = 0.01 (base rate of fraud)

➢𝑃 𝑇 𝐹𝑐 = 0.05 (false positive rate)

➢𝑃 𝐹𝑐 = 0.99 (base rate of legitimate transactions)

We can then use the following version of Bayes rule:

𝑃 𝐹 𝑇 =
𝑃 𝑇 𝐹 𝑃(𝐹)

𝑃 𝑇 𝐹 𝑃 𝐹 + 𝑃 𝑇 𝐹𝑐 𝑃(𝐹𝑐)

0.01

0.90

0.05

0.90

0.99

0.01

∙

∙ ∙
≈ 0.15

+
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A TYPICAL MISTAKE

Base rate fallacy: It is easy to overestimate the likelihood of fraud 
when a transaction is flagged because we focus on the high 
sensitivity and low false positives of the algorithm, neglecting the 
very low base rate of fraud P(F).
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Sample of 1000 transactions:

BASE RATE FALLACY
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1% fraud 99% legit

➢𝑃 𝑇 𝐹 = 0.90 (sensitivity)
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9 true positives

1 False negative

➢𝑃 𝑇 𝐹 = 0.90 (sensitivity)

➢𝑃 𝑇 𝐹𝑐 = 0.05 (false positive rate)
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9 true positives

1 False negative

50 False positives

940 True negatives
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Fraud Legit

9 true 
positives

50 false 
positives

𝑃 𝐹 𝑇 ≈
9

9 + 50
≈ 0.15
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Sondre Hølleland 

Geir Drage Berentsen
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