# MONTE CARLO SIMULATION



#### WHAT IS MONTE CARLO SIMULATION?

- Computational technique
- Model and analyse systems influenced by randomness
- Repeated random sampling
- Law of large numbers
- Very useful for casino games (hence the name)



Let X be a random variable with distribution f.

It is hard to find an explicit expression for the distribution f, but we can simulate from it.

Say we are interested in finding E(g(X))



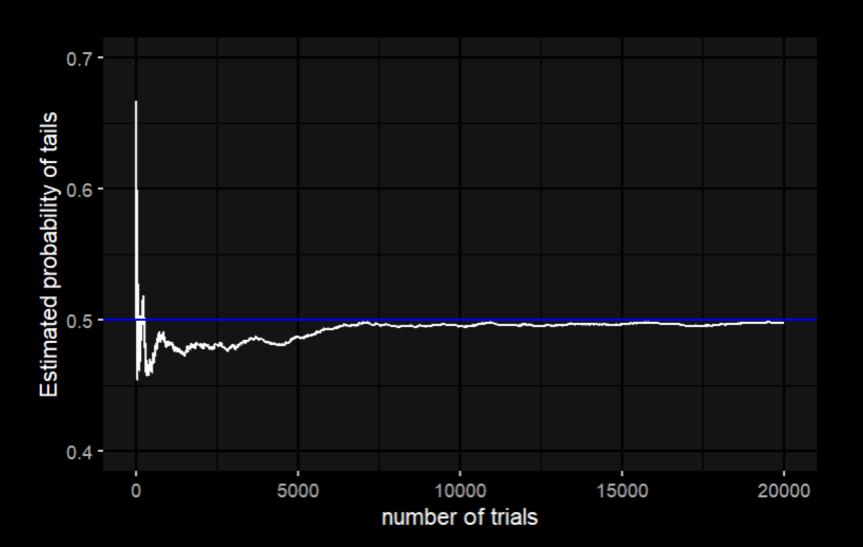
#### SIMPLE MONTE CARLO SIMULATION

- Simulate  $X_1, X_2, ..., X_n$  by drawing from f (e.g. n = 10 000)
- Approximate E(g(X)) by law of large numbers:

$$E(g(X)) \approx \frac{1}{10\ 000} \sum_{i=1}^{10\ 000} g(X_i)$$

If you are interested in  $P(X \ge x)$ , let  $g(X) = I(X \ge x)$ .







#### FOUR STEP RECIPE

- Define a domain of possible values
- Generate random numbers within that domain from a probability distribution
- 3. Perform a computation using the random numbers
- 4. Combine the results across many repetitions

Create a simulation model of the process

Simulate the process many times

Combine the results using law of large numbers



#### **EXAMPLE: YATZY**

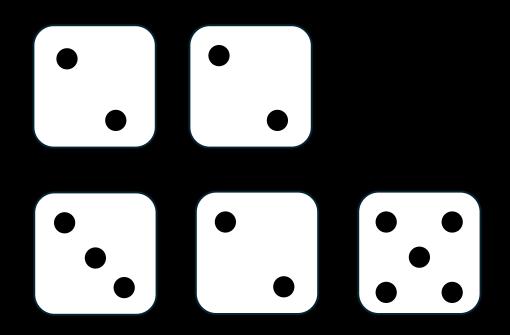
- Roll five dice three times
- After each roll, take out the dice you want to keep
- In each round, you have a specific outcome you want to achieve, e.g. maximum number of 2's.



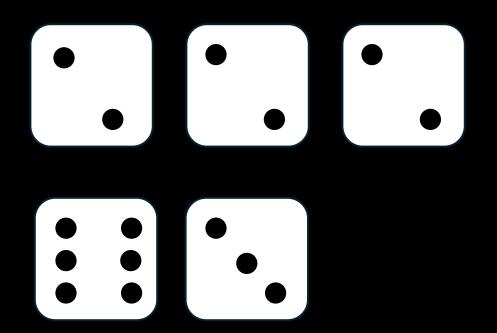




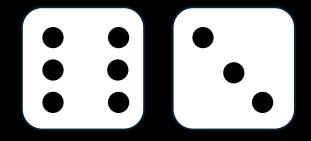














- 4
- 6
- 6
- 12
- 5
- 12

- 1. What is the expected total score?
- 2. What is the probability of getting the bonus?
- 3. What does the total score distribution look like?

Total 45

Bonus +50 if Total ≥ 63



 $X_{ji}$  denote the number of new dices showing i dots after j throws in round i  $Y_i$ : The score of round number i  $Y = \sum_{i=1}^{6} Y_i$ : Total score.

$$Y_i = (X_{1i} + X_{2i} + X_{3i}) \cdot i$$



Then

$$X_{1i} \sim Bin\left(n = 5, p = \frac{1}{6}\right)$$

$$X_{2i}|X_{1i} \sim Bin\left(5 - X_{1i}, \frac{1}{6}\right)$$

$$X_{3i}|X_{1i}, X_{2i} \sim Bin\left(5 - X_{1i} - X_{2i}, \frac{1}{6}\right)$$



Assume i = 1 and drop the i index for now. We have

$$E(X_1) = \frac{5}{6},$$

$$E(X_2|X_1) = \frac{5 - X_1}{6},$$

$$E(X_3|X_1,X_2) = \frac{5 - X_1 - X_2}{6}$$



$$= \frac{5}{6} + \frac{5 - 5/6}{6} + \frac{5 - 5/6 - EE(X_2|X_1)}{6}$$

$$= \frac{5}{6} + \frac{5 - 5/6}{6} + \frac{5 - 5/6 - E\frac{5 - X_1}{6}}{6}$$

$$= \frac{5}{6} + \frac{5 - 5/6}{6} + \frac{5 - 5/6 - 5/6 + 5/36}{6}$$

$$= \frac{30}{36} + \frac{25}{36} + \frac{180 - 60 + 5}{216}$$

$$= \frac{180 + 150 + 125}{216} = \frac{455}{216} \approx 2.1$$
TECH3

 $= EX_1 + E(EX_2|X_1) + E(EX_3|X_2, X_1)$ 

 $= \frac{5}{6} + E \frac{5 - X_1}{6} + E \frac{5 - X_1 - X_2}{6}$ 

 $E(Y_1) = E(X_1 + X_2 + X_3)$ 

$$E(Y) = \sum_{i=1}^{5} E(Y_i) = E(Y_1) \sum_{i=1}^{5} j$$

$$= \frac{455}{211} (1 + 2 + 3 + 4 + 5 + 6)$$

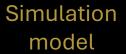
$$= \frac{455}{211} \cdot 21 \approx 44.24$$



#### MONTE CARLO SIMULATION: YATZY

For round  $i \in \{1, 2, 3, 4, 5, 6\}$ Simulate rolling 5 dices  $x_{1i} \sim Bin(5, \frac{1}{6})$ Simulate rolling  $5 - x_{1i}$  dices:  $x_{2i} \sim Bin(5 - x_{1i}, \frac{1}{6})$ Simulate rolling  $5 - x_{1i} - x_{2i}$  dices:  $x_{3i} \sim Bin(5 - x_{1i} - x_{2i}, \frac{1}{6})$  $y_i = (x_{1i} + x_{2i} + x_{3i}) \cdot i$  $y = \sum_{i=1}^6 y_i$ 

Repeat the game 10 000 times





### WHAT IS THE EXPECTED TOTAL SCORE?

$$44.24 = E(Y) \approx \frac{1}{10\ 000} \sum_{b=1}^{10\ 000} y^b = 44.25$$



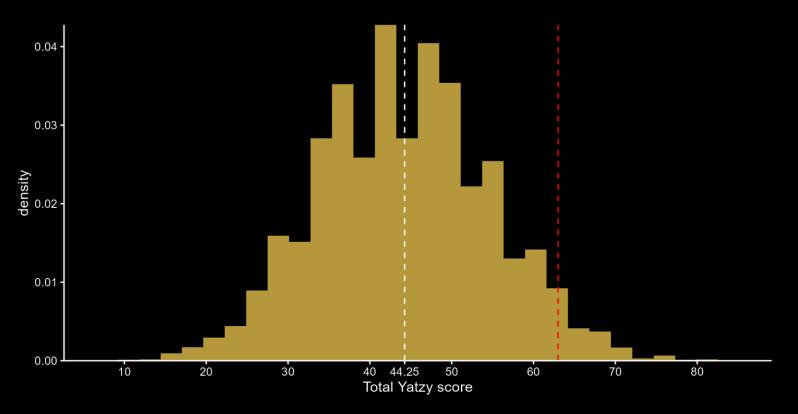
#### What is the probability of GETTING THE BONUS?

$$P(Y \ge 63) \approx \frac{1}{10\,000} \sum_{b=1}^{10\,000} I(y^b \ge 63) = 0.0426 = 4.26\%$$

$$I(y^b \ge 63) = \begin{cases} 1, & if \ y^b \ge 63 \\ 0, & otherwise \end{cases}$$



## How does the score distribution Look?





# TECH3



Sondre Hølleland Geir Drage Berentsen