WHAT IS AN ESTIMATOR?

AN ESTIMATOR

is a function of the sampled data that provides an estimate of the unknown parameter.

The estimator is the rule/recipe/method.

The estimate is the numerical value obtained after applying the estimator to a given sample.

An estimator is a random variable. (e.g. \overline{Y})

An estimate is not. (e.g. $\bar{y} = 10.2$)

TWO EXAMPLE ESTIMATORS

Let Y_1, Y_2, \dots, Y_n denote a random sample of independent and identically distributed variables with expectation μ and standard deviation σ .

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad \longrightarrow \quad \mu$$

$$S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2 \longrightarrow \sigma^2$$

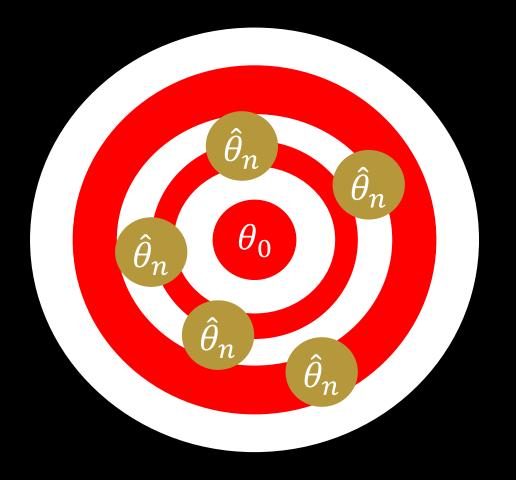
ESTIMATOR PROPERTIES

Let $\hat{\theta}_n$ be an estimator of θ_0 .

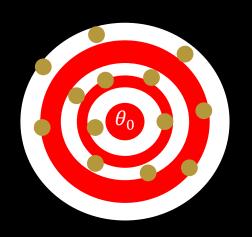
• Unbiased
$$E(\widehat{\theta}_n) = \theta_0$$

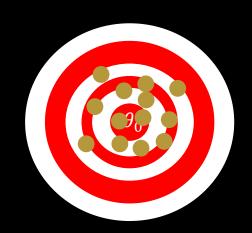
• Consistent
$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta_0| > \epsilon) = 0$$

$$\lim_{n\to\infty} E(\widehat{\theta}_n) = \theta_0 \text{ and } \lim_{n\to\infty} \operatorname{Var}(\widehat{\theta}_n) = 0$$



AN UNBIASED AND CONSISTENT ESTIMATOR





Increasing n

A BIASED ESTIMATOR



Increasing n

A BIASED, BUT CONSISTENT ESTIMATOR

Increasing n

THE SAMPLE MEAN IS UNBIASED

$$E(\bar{Y}) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right)$$

$$=\frac{1}{n}\sum_{i=1}^{n}E(Y_i)$$

$$=\frac{1}{n}\sum_{i=1}^n\mu=\mu$$

THE SAMPLE MEAN IS CONSISTENT

$$Var(\overline{Y}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}Y_i\right) =$$

$$\lim_{n\to\infty} \operatorname{Var}(\overline{Y}) = 0$$

VARIANCE ESTIMATOR

As estimator of σ^2 , we use

$$S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2,$$

but why not

$$\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\bar{Y})^{2}$$
?

STANDARD DEVIATION ESTIMATOR

We have that

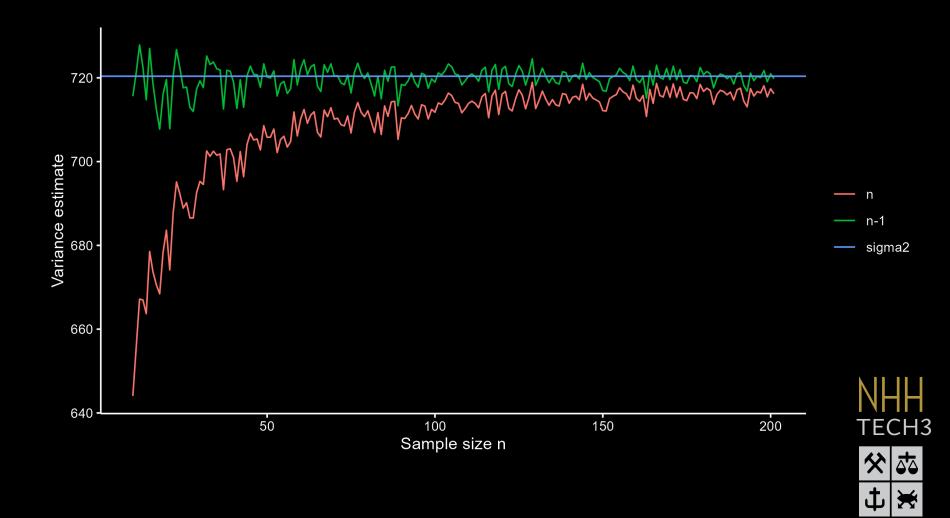
that
$$ES_Y^2 = E \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2 = \sigma_{ED}^2$$

while

$$E \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$

$$|X| = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$

$$|X| = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$



TECH3

Sondre Hølleland Geir Drage Berentsen