CONTINGENCY TABLES

CONTINGENCY TABLE

Is a black driver more likely to be searched when they are pulled over by the police compared to a white driver?

Searched by police	Black driver	White driver
FALSE	36 244	239 241
TRUE	1 219	3 108

Searched by police	Black driver	White driver
FALSE	0.130	0.855
TRUE	0.00436	0.0111

Data source: https://openpolicing.stanford.edu/

CONTINGENCY TABLE

Is a black driver more likely to be searched when they are pulled over by the police compared to a white driver?

$$\chi^{2} = \sum_{i \neq 1}^{r} \frac{\left(cb \left(ebsedyed_{ij} x peakpel; ted_{ij} \right)^{2} \right)}{expeakel; ted_{ij}}$$

S: Driver is searched by the police

B: Driver is black

S: Driver is searched by the police

B: Driver is black

 H_0 : S and B are independent

$$P(S \cap B) = P(S) \cdot P(B)$$

Searched by police	Black driver	White driver
FALSE	0.130	0.855
TRUE	0.00436	0.0111

$$P(S \cap B) = P(S) \cdot P(B)$$

Searched by police	Black driver	White driver
FALSE	0.130	0.855
TRUE	0.00436	0.0111
P(B)	0.13436	0.8661

$$P(S \cap B) = P(S) \cdot P(B)$$

Searched by police	Black driver	White driver	P(S)
FALSE	0.130	0.855	0.985
TRUE	0.00436	0.0111	0.015
P(B)	0.134	0.866	1.00

H_0 : S and B are independent $P(S^c \cap B) = P(S^c) \cdot P(B)$

Searched by police	Black driver	White driver	P (S)
FALSE	0.985 · 0.134= 0.132		0.985
TRUE			0.015
P(B)	0.134	0.866	1.00

H_0 : S and B are independent $P(S^c \cap B^c) = P(S^c) \cdot P(B^c)$

Searched by police	Black driver	White driver	P(\$)
FALSE	0.985 · 0.134= 0.132	0.985 · 0.866= 0.853	0.985
TRUE			0.015
P(B)	0.134	0.866	1.00

H_0 : S and B are independent $P(S \cap B) = P(S) \cdot P(B)$

Searched by police	Black driver	White driver	P(S)
FALSE	0.985 · 0.134= 0.132	0.985 0.866= 0.853	0.985
TRUE	0.015 · 0.134= 0.00201		0.015
P(B)	0.134	0.866	1.00

H_0 : S and B are independent $P(S \cap B^c) = P(S) \cdot P(B^c)$

Searched by police	Black driver	White drive	P(S)
FALSE	0.985 · 0.134= 0.132	0.985 · 0.866= 0.853	0.985
TRUE	0.015 · 0.134= 0.00201	0.015 · 0.866= 0.0130	0.015
P(B)	0.134	0.866	1.00

Searched by police	Black driver	White driver
FALSE	0.132	0.853
TRUE	0.00201	0.130

Searched by police	Black driver	White driver
FALSE	0.132· <i>n</i>	0.853· <i>n</i>
TRUE	0.00201· n	0.0130· n

Expected frequencies under the null hypothesis:

Searched by police	Black driver	White driver
FALSE	36 935	238 680
TRUE	562	3 635

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(observed_{ij} - expected_{ij}\right)^{2}}{expected_{ij}} \sim \chi^{2}_{(r-1)\times(c-1)}$$

Observed

Searched by police	Black driver	White driver
FALSE	36 244	239 241
TRUE	1 219	3 108

Expected under H_0

Searched by police	Black driver	White driver
FALSE	36 935	238 680
TRUE	562	3 635

$$e^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(observed_{ij} - expected_{ij}\right)^{2}}{expected_{ij}} = 858.7$$

The distribution is

$$\chi^2_{(r-1)\times(c-1)} = \chi^2_{(2-1)\times(2-1)} = \chi^2_1$$

P-value:

```
from scipy import stats
print(1-stats.chi2.cdf(858.7,df=1))
0.0
```


S: Driver is searched by the police

B: Driver is black

Ho. S and B are independent

TECH3

Sondre Hølleland Geir Drage Berentsen