GOODNESS OF FIT OF THE MODEL

How well does the model describe the data?

How much of the variation in the data is explained by the model?

HOW MUCH OF THE VARIATION IN THE DATA IS EXPLAINED BY THE MODEL?

What is the variation in the data?

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

What variation is left after the model?

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

What variation is explained by the regression?

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$

HOW MUCH OF THE VARIATION IN THE DATA IS EXPLAINED BY THE MODEL?

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Special case:
$$y = \beta_0 + \beta_1 x + \epsilon$$

$$R^2 = r^2$$

How Much of the Variation in the Data is explained by the model?

$$0 \le R^2 \le 1$$

DO NOT USE FOR MODEL SELECTION

- If you have many independent variables, model selection means finding the optimal combination of explanatory variables for your regression model
- R² will always improve by adding more independent variables to model
- One should use metrics that penalize complicated models for model selection
 - Akaike's information criteria (AIC)
 - Bayesian information criteria (BIC)
- Or cross validation

TECH3

Sondre Hølleland Geir Drage Berentsen